
Mini-Project: Generating Rogue 
Certificate via Finding Hash Collision

Gihyuk Ko

Carnegie Mellon University



Rogue Certificate

• Sotoriv et al., “MD5 Considered Harmful Today: Creating a rogue CA 

certificate”

• Slides available from here

https://www.win.tue.nl/hashclash/rogue-ca/downloads/md5-collisions-1.0.pdf


SHA-256

• Secure Hash Algorithm (SHA)

• Developed by NIST among with NSA

• Multiple versions: SHA-0 (1993), SHA-1 (1995), SHA-2 (2001), SHA-3 (2012)

• SHA-2 family of hash functions

• Consists of 6 hash functions with digests of 224, 256, 384, 512 bits

• SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256



SHA-256

• In functional form, SHA-256: 0,1 ∗ → {0,1}256

• Stepwise computation of the hash 

1. Arbitrary length input is padded up to multiple of 512-bit block with special 

padding scheme

2. Some preprocessing is done to the padded-up values

3. For each block (or chunk), apply compression function

4. Add up all results from each block(chunk)



SHA-256: Compression

• Computation done each round looks like follows:

A~H: 32-bit words
: addition mod 232

Detailed version of pseudocode here

https://en.wikipedia.org/wiki/SHA-2#Pseudocode


SHA-256-18*

• There is no such thing in reality! We are making up our own hash for 

this assignment ☺

• Two simplifications

• 0-pad inputs to the multiple of 64 bytes

• Reduce the number of rounds into 18 rather than 64

• sha256_template.py file has full specifications for SHA-256-18!



Boolean Satisfiability Problem (SAT)

Q. Is there an assignment to the variables p1, p2, …, pn such that  evaluates to 1?



Boolean Satisfiability Problem (SAT)

• Examples

• 𝜙1 𝑎, 𝑏, 𝑐 = (𝑎 ∧ ത𝑏) ∨ 𝑐

 𝑎, 𝑏, 𝑐 : 𝑇, 𝐹, 𝐹 , 𝐹, 𝑇, 𝐹 , …

• 𝜙2 𝑎, 𝑏, 𝑐 = (𝑎 ∨ 𝑏) ∧ ҧ𝑐

 𝑎, 𝑏, 𝑐 : 𝑇, 𝑇, 𝐹 , 𝐹, 𝑇, 𝐹 , …

• 𝜙3 𝑎, 𝑏, 𝑐 = 𝑎 ∨ 𝑏 ∨ 𝑐

 𝑎, 𝑏, 𝑐 : 𝐹, 𝑇, 𝐹 , 𝐹, 𝑇, 𝐹 , …

• 𝜙4 𝑎, 𝑏, 𝑐 = 𝜙1 ∧ 𝜙2∧ 𝜙3

 𝑎, 𝑏, 𝑐 : 𝑇, 𝐹, 𝐹 , 𝐹, 𝑇, 𝐹 , …



Satisfiability Modulo Theory (SMT)

Q. Is there an assignment to the variables x,y,z,w s.t.  evaluates to 1?



Satisfiability Modulo Theory (SMT)

• Examples

• 𝜙1 𝑥 = (𝑥 > 5) ∧ (𝑥 < 10)

 𝑥: 6,7,8,9

• 𝜙2 𝑥, 𝑦 = (𝑥 > 𝑦) ∧ (𝑦 > 7)

 𝑥, 𝑦 : 9,8 , (10,9)…

• 𝜙3 𝑥, 𝑦, 𝑧 = (𝑧 > 𝑥) ∧ (𝑧 < 2𝑦)

 𝑥, 𝑦, 𝑧 : 4,3,5 , 6,5,9 , 9,8,10 …

• 𝜙4 𝑎, 𝑏, 𝑐 = 𝜙1 ∧ 𝜙2∧ 𝜙3

 𝑥, 𝑦, 𝑧 : 9,8,10 , …



SMT Solvers

• Given a Boolean SMT form efficiently searches whether a solution 

exists or not

• Not every SMT problems are solvable efficiently!

• 3-SAT problem is known to be NP-complete!

• Applications

• Theorem Prover: Z3, Boogie, Dafny, …

• Symbolic Execution: Z3, STP, Boolector, …



Z3 Theorem Prover

• A theorem prover developed by Microsoft Research

• Available for download and install here

• Also available through python package managers such as anaconda

• In this project, we will use Z3 with python

• Other languages are okay to use, but please note that the template codes are 

in python

https://github.com/Z3Prover/z3


Demo



Goal of the Mini Project

• Using Z3, generate collision in SHA-256-18

• Using a given valid certificate, generate a valid rogue CA certificate via 

hash collision



Certificate Specification*

• Does not follow X.509 standard, but still has similar information inside

• Fields
• version, serial

• sig_algorithm

• issuer

• validity_start, validity_end

• subject_name, subject_public_key_algorithm, subject_public_key

• is_ca

• issuer_unique_id, subject_unique_id

• signer_private_key_str

• Full specification in certificates_template.py file



Requirements

1. [8 points] Find a collision for SHA-256-18, that one message is not a 

zero-padded version of the other message.

• Find two strings s1, s2 such that SHA-256-18(s1) = SHA-256-18(s2)

• s1 cannot be a zero-padded version of s2, and vice versa

• Use Z3 to find such collision

• You may need to find proper constraints to input to the Z3 solver

• Be careful on what operations you may want to use in each step operation



Requirements

2. [2 points] Create a rogue CA certificate using the SHA-256-18 

collision.

• Given things

• a public-private RSA key pair (class_public, class_private)

• a valid certificate signed by Gihyuk’s private key

• Gihyuk’s public key: can be used to verify

• Certificate should have power to endorse other certificates (should be a CA 

certificate)

• Detailed instructions on write-up



Final Points

• Mini project will be out around 8pm EST today

• Please submit your code in one file named:

[project]_[andrewid].py

• Please include your text submission inside the code in a comment form!

• If you want to make a separate .pdf for text submission, that’s also okay

• No grace days are available to use for the mini project, so start early!

• It is NOT permitted in any case to show or share source code: please 

work out individually!



Thanks!


